In the title compound, C$_{22}$H$_{15}$BrN$_2$, the phenanthrene moiety is slightly skewed. The dihedral angle between the phenanthro[9,10-\(d\)]imidazole mean plane and the benzene ring is 37.78 (6)$^\circ$. The crystal packing is stabilized mainly by aromatic interactions, though a weak intermolecular C–H···N hydrogen bond is also observed.

Comment

The title compound, (I) (Fig. 1), was prepared for use as a building block in the syntheses of oligo-phenylene vinylenes for non-linear optical studies. In (I), the imidazole ring is slightly bent from the skewed phenanthrene ring, with atom C16 located 0.092 (2) Å out of the least-squares plane of the phenanthro[9,10-\(d\)]imidazole system. The dihedral angle between the phenanthro[9,10-\(d\)]imidazole mean plane and the benzene ring is 37.78 (6)$^\circ$. This rotation is most probably due to the adjacent N-methyl group.

The crystal packing (Fig. 2) is stabilized mainly by aromatic interactions. A herring-bone pattern is formed by the phenanthrene rings at \(y = \frac{1}{4}\) and \(\frac{3}{4}\), along with stacking of bromobenzene rings in the planes at \(y = 0\) and \(\frac{1}{4}\). A weak intermolecular C–H···N hydrogen bond (Table 1) is observed in the crystal structure.

Experimental

The title compound was prepared in accordance with a known procedure (Krebs & Jørgensen, 2001).

Crystal data

C$_{22}$H$_{15}$BrN$_2$

\(M_r = 387.27\)

Orthorhombic, \(Pna_2_1\)

\(a = 6.0163\) (4) Å

\(b = 29.332\) (3) Å

\(c = 9.1726\) (8) Å

\(V = 1618.7\) (2) Å3

\(Z = 4\)

\(D_\text{r} = 1.589\) Mg m$^{-3}$

Mo \(K\alpha\) radiation

Cell parameters from 26555 reflections

\(\theta = 2.3\text{ to }31.0^\circ\)

\(\mu = 2.55\) mm$^{-1}$

\(T = 122\) (1) K

Plate, pale yellow

0.55 × 0.46 × 0.08 mm

© 2005 International Union of Crystallography
Printed in Great Britain – all rights reserved
Data collection
Nonius KappaCCD diffractometer
ω and ψ scans
Absorption correction: Gaussian integration (Coppens, 1970)

$T_{\text{min}} = 0.365, T_{\text{max}} = 0.903$
36851 measured reflections
5137 independent reflections
4771 reflections with $I > 2\sigma(I)$

Refinement
Refinement on F^2

$wR(F^2) = 0.057$
$S = 1.15$
5137 reflections
226 parameters
H-atom parameters constrained

$w = 1/\left[\sigma^2(F_o^2) + (0.0299 P)^2 + 0.9474 P\right]$

where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta\sigma/\sigma)_{\text{max}} = 0.001$
$\Delta\rho_{\text{max}} = 0.45 e \text{Å}^{-3}$
$\Delta\rho_{\text{min}} = -0.34 e \text{Å}^{-3}$

Absolute structure: Flack (1983), 2414 Friedel reflections
Flack parameter = −0.009 (6)

Table 1
Hydrogen-bonding geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C23—H23···N15'</td>
<td>0.95</td>
<td>2.54</td>
<td>3.419 (2)</td>
<td>154</td>
</tr>
</tbody>
</table>

Symmetry code: (i) $-x, -y, \frac{1}{2} + z$.

All H atoms were located in a difference Fourier map and refined using a riding model, with fixed individual displacement parameters set at 1.2–1.5 times U_{eq} of the parent atom (C−H = 0.95–0.98 Å).

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EvalICCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figure 1
View of (I), with displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2
The crystal packing of (I). H atoms have been omitted for clarity.

The authors thank Flemming Hansen for collecting the diffraction data and the Centre for Crystallographic Studies for the use of their equipment. The work has been supported by the Danish National Research Foundation.

References